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The evolution of MHD equilibria toward high B is modeled by magnetic flux conservation 
with a given y(#) and by single fluid particle and energy balances which determine p(#, t). 
These one-dimensional flux surface averaged equations, written with magnetic flux $ as the 
independent variable, are coupled to the two-dimensional MHD equilibrium equation 
through $, p(#, t), and q(4). The location and evolution of the plasma cross section bound- 
ary are precisely specified through the use of a fixed boundary equilibrium technique. 
In moving boundary studies (e.g., plasma compression) the resulting system of equations 
is advanced in time from an initial state by a procedure which utilizes two nested predictor- 
corrector loops together with an implicit time-stepping technique. The inner predictor- 
corrector loop advances the transport equations subject to a given equilibrium configura- 
tion while the outer loop evolves the equilibrium. For fixed plasma boundaries this procedure 
is modified for greater computational speed. These techniques provide satisfactory numerical 
convergence together with complete consistency between the coupled one-dimensional 
system of equations and the two-dimensional equilibrium. This method can be applied to 
the study of equilibrium evolution involving dramatic changes of plasma position, shape, 
and profiles while prescribing the evolution of the plasma boundary. As such, it can serve 
as a useful tool in the design of poloidal field systems or as a source of equilibria in high-/3 
MHD stability studies. As an example, the compressional scaling laws of Furth and Yoshi- 
kawa are found to be modified for small aspect ratio. 
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1. INTR~DUCTI~N 

The study of two-dimensional tokamak transport has enjoyed considerable 
attention recently. This attention is due in part to some recent calculations of high-/? 
equilibria in flux-conserving tokamaks (FCT) [I, 21 and to experiments with non- 
circular cross sections [3-51. A common approach to two-dimensional transport 
involves the time integration of one-dimensional particle balance, energy balance, 
and flux diffusion equations which are averages over the flux surfaces [6-l 11. These 
equations are coupled to the two-dimensional MHD equilibrium equation through 
the safety factor and pressure profiles, and through several geometric coefficients 
which depend upon the flux surface configuration. The evolving safety factor and 
pressure profiles are used as input functions in continually recalculating the equi- 
librium, and the resulting geometric factors enter the one-dimensional transport 
equations as coefficients. 

A prevailing emphasis in these calculations has been to include the effects of the 
two-dimensional force balance in assessing the relevancy of various transport processes 
for the interpretation and extrapolation of experimental results. The physical 
assumptions and mathematical methods used in these calculations vary with the 
specific applications being considered. Our emphasis is different in that we use flux 
surface averaged transport as a tool to study equilibrium evolution. With proper 
models for transport processes, the resulting profiles are expected to be more realistic 
than the arbitrarily prescribed functions used in typical equilibrium studies. 

The equilibrium modules in the existing studies generally use computationally 
fast free boundary techniques. However, relatively little dynamic control of the plasma 
cross section is incorporated, and significant and arbitrary alterations in plasma shape 
and position usually result during large changes in plasma fi. An exception is the work 
of Byrne and Klein [1 I] in which a constant plasma cross section boundary is 
maintained with the use of orthogonal flux coordinates. The use of orthogonal flux 
coordinates makes it inconvenient for us to study the equilibrium evolution in detail. 

In the case of flux-conserving equilibria, it has been demonstrated [2] that, during 
rapid plasma heating, a change of a few percent in the plasma minor radius will result 
in a skin current comparable to the plasma current. Such a skin current, as it diffuses 
through the plasma periphery, is expected to have a strong effect on the subsequent 
plasma confinement, stability, and evolution [ 121. It is, therefore, desirable to exercise 
relatively precise control of the plasma shape and position in order to avoid generating 
the skin current and to properly simulate the plasma equilibrium evolution in non- 
circular high-p tokamak experiments [4, 51. 

The uncertainties in equilibrium cross section can be avoided by a time-dependent 
prescription of the plasma cross section and position that is independent of the 
transport calculations. The “fixed boundary” approach with arbitrarily prescribed 
cross section [13] is used for this purpose. The resulting equilibria can then be used 
as input for high-/3 MHD stability calculations, or to provide information on the 
evolving external poloidal fields required, which may then be used to determine the 
required current evolution of the poloidal field coils [14]. The plasma shape and 
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position control requirements are expected to be most severe during rapid heating 
(by neutral beam or adiabatic compression). Because the flux is well conserved in this 
situation, we now study the case where the q-profile is unchanged. 

Our emphasis is on developing numerical schemes for studying the evolution of 
noncircular MHD equilibria. For convenience, only a one-fluid approximation to the 
particle and energy balance equations will be used in this work. Profiles of diffusion 
and conduction coefficients consistent with experimental observations [15, 161 are 
used to give realistic pressure profiles. These restrictions to a one-fluid flux-conserving 
plasma are not crucial to the numerical approach used. More sophisticated transport 
models and magnetic flux diffusion can easily be incorporated when the need arises. 

In the following sections, we briefly indicate the physics models and equations 
involved in this work (Section 2), then discuss in detail the numerical procedures 
employed (Section 3) and some results demonstrating the utility of this approach 
(Section 4). 

2. PHYSICS MODELS AND EQUATIONS 

2. I. MHD Equilibrium 

The instantaneous equilibrium state of an axisymmetric toroidal plasma is described 
by the Grad-Shafranov equation 

= -47rR2p’(#) - FF’(#), (1) 

in which 
VW, 2) = RA, (2) 

is the poloidal magnetic flux function, p is the pressure, 

F(llr) = RB, (3) 

is the toroidal magnetic flux function, and the prime denotes differentiation with 
respect to $. In terms of C,!J and F, the magnetic field is given by 

where C$ is the unit vector in the toroidal direction. 

2.2. Flux Conservation 

Magnetic flux conservation requires that the safety factor 

q(#) = ( l/47r2) FV’<R-2) (5) 
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and the total poloidal flux &dge - I,$, remain fixed as the plasma evolves in time. 
The ( ) notation in Eq. (5) denotes an average [17] over surfaces of constant #, and 
V(#) denotes the volume contained within a flux surface $. Equation (1) can be 
averaged over flux surfaces and combined with Eqs. (4) and (5) in various ways to 
yield several equations. We use two of these in the numerical procedure to obtain 
an equilibrium of given safety factor (see Section 3): 

$7 ((9) g-1 + (2nJ” q(#) $ [& $1 = -4?Tp’(#) (6) 

and 

dF2 (R-2) -- [ ~ 
d# 2 

(7) 

These equations are similar to those proposed by Grad and co-workers [18]. 

2.3. Transport Equations 

Single-fluid particle and energy balance equations are assumed for convenience. 
They can be averaged over each flux surface to obtain the following one-dimensional 
equations in which I/ is the independent variable: 

g (n V’) = (n’ V’(DR2B,“))’ + V’(csnj> J- (Snud), (8) 

2 
t - v’5:3(<~Jd2> +- (H,i + (Hid), 3 (9) 

where n($, t) and p($, t) are the particle density and pressure, respectively; D and x 
are the particle and heat conduction coefficients, respectively; Bp2 is the square of 
the poloidal B field; 71 is the plasma resistivity; (Sini) and (Sr,,r) are the flux surface 
averaged injection and fueling particle sources, respectively; and (7Jd2), (H,), and 
(Hrnj) are the flux surface averaged ohmic, nuclear alpha, and injection heating 
sources, respectively. The ideal gas law p = nkT is assumed. 

2.4. Transport Coeficients and Sources 

Equations (l), (5) (8), and (9) comprise our present approach to the time evolution 
of MHD equilibria, subject to particle and temperature diffusion and to various 
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particle and energy source terms. We now describe the simple models of the transport 
coefficients and source term. 

The plasma resistivity is chosen to be the Spitzer resistivity. The heat conduction 
coefficient x is taken to consist of anomalous electron plus neoclassical ion contri- 
butions 

x = (xa + xiw (10) 

The anomalous electron term is given by 

x,, = 5 * 1017/n, = 
set 

= I * 10’8/n cm2 
set’ (11) 

where the electron density is in particles/cm 3. The formulation for the neoclassical 
ion conductivity is taken from Hinton and Hazeltine [19]. The particle diffusion 
coefficient is taken to be 

_ 2 * ,Ol’,nCm2. 
set (12) 

These diffusion coefficients are in good agreement with experimental observations [20] 
of low-density ohmically heated tokamak discharges for reasonable choices of p(#), 
n(#), and q(#). These simple diffusion coefficients are considered adequate for our 
purpose since the physical mechanisms for heat conduction and particle transport 
in tokamaks are yet to be fully understood [I 5, 161. We have included deuterium- 
tritium (D-T) burning as an energy source to be used when the effects of n-particle 
heating are studied. In this case the deuterium and tritium particle densities are each 
assumed to be equal to one-fourth the total particle (electrons and ions) density. 
Reaction rate formulas for D-T burning were taken from the fitting formulas of 
Fowler, et al. [21]. When particle fueling is desired, the particle fueling source is 
assumed to be uniform to a chosen depth in the plasma beyond which it drops 
exponentially at a chosen rate. The neutral injection energy and particle source terms 
are calculated using the modified Monte Carlo injection package, NFREYA [22]. 

3. NUMERICAL PROCEDURES 

3. I. SpeciJication of the Problem 

The evolution of MHD equilibria subject to magnetic flux conservation, to particle 
and energy transport, and to the motion of the plasma cross section boundary is 
determined by Eqs. (5), (S), and (9) coupled to the equilibrium Eq. (I). The transport 
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coefficients and source terms described above may all be considered as functions of $J 
(through flux surface averaging) and t, which can be evaluated at the time of each step. 

3.2. Initial- Value Problem 

The system of equations to be studied presents an initial-value problem; i.e., given 
the initial state of the plasma and prescriptions for calculating the transport coeffi- 
cients, source terms, and evolution of the plasma cross section boundary, the subse- 
quent behavior of the plasma can be calculated. The initial state requires the specifi- 
cation of the dimensions and cross-sectional shape of the plasma; the initial pressure, 
density, and toroidal flux function [ p(gL), n(#), and I;(#), respectively]; and the initial 
equilibrium #(R, Z). The total poloidal flux I/ledge - z,$, and the safety factor q(#) can 
then be evaluated. The specification of (Si,j)(#), (Sr,,r)($), (Hrnj)($), and the cross 
section boundary as functions of t then complete the input required to study the 
evolution of the plasma. 

3.3. Fixed Boundary Equilibrium Procedure 

Before considering the full time-stepping procedure, we will describe the solution 
of the Grad-Shafranov equation (1) for given p(z,!+ t), q(#), t,&tge - &, and 
F($!kdge , t). We separate this problem into two parts: an inner two-dimensional part 
in which Eq. (1) is inverted for a given F(#) and an outer one-dimensional part in 
which F(#) and the plasma minor radius a are iterated to obtain the desired q($) and 

* edge - &, . This entire procedure is independent of the flux conservation assumption 
since q(4) and yhdge - #o can be functions of time without affecting the procedure, 
which is carried out at a point in time. In order to control closely the evolution of the 
plasma cross section boundary, we use a fixed-boundary technique to invert Eq. (1). 
Once a rectangular coordinate grid in R and Z is chosen, the boundary of the plasma 
is specified to lie anywhere within the chosen coordinate grid. We allow for circular, 
elliptical, or D-shaped plasmas. The desired boundary condition on I/J is maintained 
by specifying z,!~ at grid points which are exterior but adjacent to the boundary (“ghost 
points”). We have chosen a conducting wall boundary condition of 

4 edge - - 0. (13) 

Equation (1) is then solved inside the plasma boundary by an iterative procedure, 
with the ghost points and their # values forming the numerical boundary of the 
solution. Periodically, as the procedure converges, the ghost point values of $ are 
changed to maintain the desired boundary condition. We use the method of successive 
overrelaxations (SOR) in order to invert Eq. (1). Because of the simple transport model 
assumed, much of the computing time is spent in the equilibrium portion of the 
program. Hence, it is important to use an efficient procedure to carry out the 
equilibrium. In detail, our procedure is the following [23] (see Fig. 1): 

(a) Let superscript k denote a source iteration step number, initially k = 0. 
Establish an initial guess #(O)(R, Z) for the poloidal flux function. During the transport 
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calculation, the solution of the previous equilibrium is used as the initial guess. When 
no previous solution exists, $(O) is taken to be quadratic in form with a minimum at 
the major radius midplane (R, Z) = (R, , 0). In this case #to) is extrapolated to the 
ghost points using the conducting wall boundary condition. 

(b) Calculate the right-hand side of Eq. (1) as a function ,(O)(R, Z) using the given 
functions p($) and F2(#) together with #co). 

(c) lnvert the linear equation d $ * CL 8~ = .Y(~~)(R, Z) by SOR to obtain #(I;i-l). 
Extrapolate ~,4 tL +l) ^- to the ghost points using the conducting wall boundary condition. 

(d) Calculate @+l)(R, Z), the right-hand side of Eq. (I), using #(7c+1). 
(e) Compare s (7c+1)(R Z) to s(~<)(R, Z). If converged, continue to stepf. Otherwise, 

set k - k + 1 and return to step (c). 
(f) The procedure has converged to the new equilibrium solution #(R, Z) = 

$b’” J’(R, Z). 

The rate of convergence of the procedure described above depends in two ways 
upon the initial guess for $. First, a poor initial guess for # results in a larger number 
of source function iterations than does a good initial guess. Also, a poor initial guess 

+ 
(b) 

INITIAL 
SOURCE TERM 

JOI 

i : 

(cl 

- i,(k+‘i FROM 
Jk’ BY SOR 

NO, k - k+l 

I 

(d) 

1 I[~+‘) FROM 
$k+ll 

END 
EQUlLlEiRlUM 
(INNER 2m 0) 

FIG. I. Flowchart o the inner two-dimensional equilibrium numerical procedure described in 
Section 3. 
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for # can lead, during the first few source function iterations, to a greater number of 
SOR iterations in step (c), which are necessitated by significant changes in the source 
function. In choosing an initial guess for #(R, Z), we make use of the fact that $ 
changes slowly both in time and in successive iterations of F and a (see below), 
Hence, the previous equilibrium solution at the corresponding grid points provides a 
good initial guess for $, even in the case of compression, where the location and 
spacing of the grid points, but not their number, change in time. 

It is well known that the SOR technique may converge for relaxation factors 
between 0 and 2. For 32 x 26,40 x 32, and 154 x 126 grid sizes, we have found the 
optimal values for the relaxation factors to be I .85, 1.88, and 1.97, respectively. Hence, 
the magnitude of the relaxation factor increases with the number of points in the 
two-dimensional grid. We have also found it necessary to relax the source function s 
before proceeding from step (e) to step (c) in the iteration. We have found the optimal 
value of this relaxation factor to be 0.75, so that stk l) 4 0.75P l) 2 0.25P) after 
the completion of step (e). 

Although Eq. (1) is inverted only linearly, the iteration procedure described above 
allows the solution of the full nonlinear problem through reevaluation of the source 
function d”)(R, Z). An alternative method of calculating fixed boundary equilibria 
involves updating the source function with each SOR iteration, so that the SOR 
residual in # and the source function residual in s converge simultaneously. Although 
this method requires fewer SOR iterations than the present technique, each iteration 
is accompanied by an update of the source function over the entire two-dimensional 
grid. In order to minimize the required number of source function iterations, we have 
chosen to converge the SOR solution for a given source function, as in step (c) above, 
before iterating the source function. By this method the number of source function 
iterations is typically reduced by more than a factor of 2, although this gain is partially 
offset by an increase in the number of SOR iterations. On a variety of cases com- 
paring the timing of the two techniques, the adopted procedure runs up to 50 ‘,;, faster 
on a CDC-7600 computer than the other method. 

This procedure converges to lo-* in the source function residual in 5-20 iterations, 
depending on the initial guess, for an (R. Z) grid of 32 x 26 points in the upper half 
plane. The linear SOR part of the equilibrium solver converges to 1O-5 residual in 4 
in 5-50 iterations. Typically, 30-50 SOR iterations are required for the linear problem 
during the early nonlinear steps when the source function residual is large, but, as the 
source function residual decreases, fewer SOR iterations are required to solve the 
linear problem. 

The outer part of the equilibrium procedure iterates F(6) and the plasma minor 
radius a in order to obtain the desired y(#) and $edge - & . Basically, the safety 
factor 9 is sensitive to the iteration of F, while #edge - &, is dependent upon a for 
given F($edge). An alternative possibility would be to iterate F(&@) for a given 

minor radius a. Letting superscript k denote the iteration index, we follow the scheme 
below (see Fig. 2): 

(a) Make an initial guess F(O)(+) for the toroidal flux and a(O) for the minor radius. 
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Typically we set F(O) to the values at the previous time step and a(O) to some prescribed 
value. 

(b) Solve d*#li) = -4rRZp’ - F(h)$‘lk)’ by the fixed boundary equilibrium 
procedure discussed above. Evaluate (&dse - Icro)(I’). 

(c) Evaluate q(“)(#) = (1/4n2) FL) P’fn)‘(R-2)(L) using t,P)(R, Z) to determine flux 
surfaces of constant $ and, hence, I”“)(#) and (R-2)(k). 

(d) Compare qck)(#) to q(4) and (&dge - I/,)‘“) to &dae - #o. If converged, 
continue to step (e). Otherwise, apply the method described below to obtain P+l)(#) 
and a’” I), set k -+ k + 1, and return to step (b). 

(e) The solution has converged with F(#) = P)(#), a = &‘, and #(R, Z) = 
$‘“‘(R, Z). 

FIG. 2. Flowchart of the outer one-dimensional equilibrium numerical procedure described in 
Section 3. 

The values of a(O) and au’ are obtained by prescribed guesses. Thereafter a(“+l) is 
obtained from utk), a(‘-‘), (i&d@ - $o>‘k’, ($!kdge - #,)‘“-“, and $kge - #o using 
the secant method. Convergence of &dge - #o to IO- 3 is obtained in two or three 
iterations. 

The convergence of the outer part of the equilibrium procedure depends in two ways 
upon the initial guess for F($). More iterations of F will be required for a poor initial 
guess than for a good initial guess. In addition, the fixed boundary equilibrium proce- 
dure used in step (b) will require more iterations for a poor initial guess of F, parti- 
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cularly during the early F iterations, in which significant changes in 1$ cause the initial 
guess for J,C% (the equilibrium solution from the previous F iteration) to be inaccurate. 
Because the variation of the toroidal flux function F(~!J) in time and in successive 
transport predictor-corrector iterations is slow, the use of the previous F(#) is a good 
initial guess in step (a). This part of the equilibrium procedure is not used to obtain 
the plasma state at the initial time for which F(#) and a are specified and q($) and 
* edge - z,!J,, are calculated as results. 

In order to determine the surfaces of constant #, which are required for the calcu- 
lation of average quantities in both the outer equilibrium and transport procedures, 
linear interpolation of #(R, 2) between adjacent points in both the horizontal and 
vertical directions of the two-dimensional grid is used. For each value of IJ the set of 
points so determined constitutes the flux surface on which the averaged quantities 
are calculated. 

In present calculations we maintain a constant value of F at the plasma edge: 

F($edge 3 t) = Fedge = COIlStallt. (14) 

The iteration procedure for F contained in step (d) must fulfill this condition. For 
minor radius compressions at fixed major radius, which are not discussed here, 
F($edge , t) must be an increasing function of time. Also, with the adopted method, 
we found it necessary to introduce a relaxation factor into the iteration of F. The 
optimum value of this factor is 0.5, so that F2’“+l) + 0.5F2(k+1) + 0.5F2tL) between the 
completion of step (d) and the return to step (b). 

The convergence of the safety factor profile depends on the technique used to 
iterate Fin step (d) [2]. We use a method similar to that described by Grad, et af. [18]. 
This method utilizes the two-flux surface averaged forms of the Grad-Shafranov 
equation given by Eqs. (6) and (7). In Eq. (6), $I is regarded as a function of the flux 
surface volume V, as are (I WV j2/R2) and (P2). However, q and p’ are regarded as 
functions of #. Equation (7) is an equation for F2 with all quantities regarded as 
functions of #. The method used in step (d) consists in the following: 

(1) Solve Eq. (6) for #(V) using (I WV 12/R2)(“) and (R-2)‘k). This can be done on 
an equally spaced volume grid using SOR. The boundary values of #, namely $ at 
the magnetic axis and at the plasma boundary, must be specified. When all quantities 
are interpolated back into an equally spaced 4 grid, the net effect of this step is to 
alter the values of $ assigned to specific flux surfaces, but not the geometry of the flux 
surfaces or the functions p’( 6) or q(#). Hence, step (1) simply alters the functions V(#J), 
v’($), W2h, and (I VFJ’ 12/R2h. 

(2) Solve Eq. (7) for F2’“+l)(#) using the values of (R-2) and (I V V 12/R2) resulting 
from the reparameterization in step (1). F2(k+1)(#) could also be obtained from Eq. (5) 
using the new values of V’ and (R-2). However, the integration procedure associated 
with Eq. (7) leads to smoother values of F 2(k+1)(#) than does the direct evaluation of 
Eq. (5). This is done by direct integration on an equally spaced # grid. The boundary 
condition is chosen to maintain F(#edge , t) constant. 
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For typical cases using grid sizes of 31 points in both 4 and V, we find that the 
outer part of the equilibrium procedure converges to within 2 x lO-3 of the desired 
safety factor in 5-10 iterations, depending on the initial guess for F($). 

3.4. Transport Equations: Time Stepping 

In this section we shall describe a method of advancing the transport equations (8) 
and (9) which was developed for compressional studies in which the plasma cross 
section boundary is prescribed as a function of time. This method can be modified 
to gain increased computational speed for studies having constant plasma boundary. 

Equations (8) and (9) are written in adiabatic form, featuring time derivatives of nV’ 
and p V’ji3, respectively. The time derivative of V’ can be written, using the techniques 
of flux surface averaging, as 

; V’(#, t) = - (+g))‘, 

where the time derivative on the left-hand side is taken at fixed t,A and the time 
derivative on the right-hand side is taken at fixed (R, Z). In cases involving a constant 
plasma boundary, the poloidal flux surfaces do not change rapidly in time. Hence, 
the time rates of change of V’ and of the other equilibrium shape-dependent quan- 
tities are not large, and such quantities can be treated explicitly in advancing the 
transport equations. Equation (15) can then be combined with Eqs. (8) and (9) to 
obtain the following equations: 

$ = + (v’ (s))’ + & (n’ VJ(DR2BQ2))’ + (Sinj) + (Sfuel), (16) 

3P - =~~(V’(~))‘+~(pV’5:3~(DR2B~2))’ 
at 

+ ip ($ <DR2B,P))’ + i $ [($)’ nV’<xRz&2)]’ 

2 
+ - (CTJb2> + CHa> + (Hinj)), 3 (17) 

where an/at and ap/at are taken at fixed $ and h,bJllat is taken at fixed (R, Z). It is 
possible to advance Eqs. (16) and (17) implicitly one or several time steps, before 
recalculating the equilibrium, by treating all specifically geometric quantities, i.e., 
those depending only on flux surface shapes, as explicit terms determined by the most 
recent equilibrium. 

In compressional studies the plasma size, shape, and location may be changing 
sufficiently fast that the rates of change of V’ and the other geometric quantities are 
significant. Such quantities must then be treated implicitly. Equations (8) and (9) 
are best used for such problems since the evaluation of (a#/at), in Eqs. (16) and (17), 
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on a moving coordinate grid presents difficulties. Any approach which treats the 
geometric terms implicitly leads to a predictor-corrector scheme requiring at least 
two equilibrium evaluations for each time step. 

We have developed such a procedure which consists of two nested, predictor- 
corrector loops together with an implicit time differencing scheme (Crank-Nicholson). 
The inner loop advances the equations for a given set of equilibrium conditions and 
requires very little computer time. The outer loop involves solving the flux-conserved 
equilibrium at the new time and is, therefore, more time-consuming. Two sets of 
test values at the new time are retained for each 12 and p, one set to determine the 
convergence of each predictor-corrector. Consider a time step i + i + 1 and let 
superscripts j and k denote the predictor-corrector iterations for the inner and outer 
loops, respectively. Then the time-stepping procedure is as follows (see Fig. 3): 

(a) Initialize all quantities, including predictor-corrector test values nii), ~jon), 
rtb’$ , and ~$2~ , to the initial values at time step i. 

(b) Obtain Q+~ by advancing Eq. (8) implicitly, using a tridiagonal matrix. 
Because p does not appear, Eq. (8) can be advanced independent of Eq. (9). Use all 

I NO, k -. k+l I YES (e) 
NEW ENJIL. AT 

---I- i+l, UPOATE 
ALL IMPLICIT 

TERMS 

FIG. 3. Flowchart of the transport time advancement numerical procedure described in Section 3. 
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available quantities at time i + 1 in implicit terms and quantities at time i in explicit 
terms. 

(c) Obtain pi+l by advancing Eq. (9) implicitly, using a tridiagonal matrix. Use 
ni+l obtained in step (b) to advance Eq. (9) independent of Eq. (8). As in step (b), 
implicit terms contain quantities at time i + 1 and explicit terms at time i. 

(4 Compare ni+l, pi+l , to nfi , ~~6 . c3) If converged, continue to step (e). Otherwise, 
set nlj,+l’, pljnfl) equal to Ili+r , pi+1 ; use ni+l , pii to obtain appropriate quantities at 
time i $ 1 for use in implicit parts of Eqs. (8) and (9) and return to step (b). 

(e) Calculate the equilibrium and all other quantities at time i + 1 by using ni+i , 

Pit1 . 

(f> Compare nit1 , ~i+~ to 4% T Pout. @) If converged, proceed to step (g). Otherwise, 
set nbkul’, phytl) equal to ili+r , pi+l and return to step (b). The difference between 
steps (d) and (f) is that in (f) all quantities, including those which depend only on the 
equilibrium, are updated to time i + I while in step (d) equilibrium quantities are not 
altered. 

(g) The time step is completed with both predictor-correctors converged. Set all 
quantities to the values at time i + 1 and proceed to the next time step. 

Given the simple transport model used here, very little computer time is required 
to carry out steps (a)-(d) of the above procedure. The residual in the inner predictor- 
corrector loop can, therefore, be made quite small. The equilibrium evaluation in 
step (e) involves most of the computing time in the procedure. Although the equi- 
librium evaluation occurs in the outer predictor-corrector loop, the computational 
time increases less than linearly with the number of iterations in the loop because 
successive iterations result in improved initial guesses for the equilibrium. For example, 
we find that the above procedure with three iterations in the outer predictor-corrector 
loop typically requires only twice as much computer time as the first iteration alone. 
The overall computing time required in plasma simulations using the above procedure 
depends upon the size of the time step. We have found that, as long as the equili- 
brium procedure converges, the time required to make a calculation decreases with 
increasing time-step size. Also, we have found for several test cases that the 
results are independent of the time-step size as long as all convergence criteria are 
met. 

In order to speed up the calculations when the plasma cross-sectional boundary is 
fixed, two changes may be made in the above procedure. Equations (16) and (17) 
should be used instead of Eqs. (8) and (9) to advance the pressure and density. Then 
the geometric factors can be treated as explicit terms and the outer predictor-corrector 
loop (step (f), Pout , and nout) can be deleted. Hence, the equilibrium is evaluated just 
once at the end of each time step. It is also possible in this method to carry out several 
transport time steps before evaluating the new equilibrium and geometric factors in 
step (e). We have found this modified procedure for fixed plasma boundaries to run 
approximately twice as fast as the compressional procedure (with three outer 

581/36/1-4 
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iterations) for cases of constant plasma cross section. In these cases the physical results 
of the two procedures were in agreement. 

The compressional procedure converges for both n andp to 10-j in 5-15 steps on the 
inner productor-corrector loop. Convergence to 3 x 1O-3 for both n and p is typically 
achieved in three steps on the outer loop. These rates of convergence apply to time- 
step sizes chosen to give changes of 20 “/; in p and to grid sizes of 31 points in I/J. 
Because the subsequent equilibria change mildly, the SOR approach to solve for $ is 
efficient. Convergence for the modified noncompressional procedure is comparable to 
that for the inner predictor-corrector loop of the compressional procedure. 

3.5. Numerical Procedures: Summary 

In summary we note that the procedures just described ensure numerical conver- 
gence in all physical variables for the one-dimensional and two-dimensional parts of 
the problem. The geometric coefficients obtained from the equilibrium are used in the 
implicit advancement of the transport equations only after the 2-D equilibrium 
calculations have converged for given p(4), q(4), &dpe - I,& , F(&dge), and plasma 
cross section. 

It should be emphasized that adding flux diffusion or more sophisticated transport 
to the model would have no effect on either the equilibrium procedure or its coupling 
to the transport. Only the details of the transport time stepping would be altered. 

4. RESULTS 

4.1. Neutral Injection to Ignition 

As an example of a case in which the plasma boundary remains nearly fixed we 
consider the heating of a low-/3 prototypical reactor plasma to ignition by neutral 
injection with simultaneous fueling of the plasma. The particle fueling was assumed 
to penetrate 25 cm into the plasma, which had a minor radius of 125 cm. The fueling 
rate was chosen to raise the average electron density from fi, N 5.0 x 1Or3 cm-3 to 
ii, = I .5 x 1014 cm-3 in approximately 5 sec. The FREYA Monte Carlo neutral beam 
package [22] was used to inject a deuterium beam into a D-T plasma. A 120-keV 
neutral beam of about 65-MW power was injected horizontally at an angle of 15” from 
perpendicular with respect to the toroidai direction. Figure 4 shows the evolution of 
p’(#) and FIJ’(#) with time. Figure 5 shows the time evolution of the electron density, 
the temperature, the injection heating, and the nuclear alpha heating profiles. Figure 6 
shows the time evolution of the average toroidal beta & , the average electron density, 
the average temperature, and the total injection and nuclear alpha heating powers. 
The profiles in Figs. 4 and 5 are shown for times t = 0, 2.09, and 5.29 sec. Plasma 
ignition occurs at about 5 set, at which time the nuclear alpha heating exceeds the 
injection power. In this calculation F,d c ge was kept constant. The variation in the 
plasma minor radius a was less than 0.5 2). 
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FIG. 4. Evolution of the p’(4) and W’(4) profiles in time for the neutral injection calculation 
described in Section 4. The solid curves plot the initial profiles, the dotted curves correspond to a 
time of 2.09 set, and the dashed curves show the profiles at 5.29 sec. Note how FF’ mirrors p’ as F 
changes to conserve flux during the evolution of the plasma. 
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FIG. 5. Evolution of the electron density, temperature, neutral injection heating, and nuclear 
alpha heating profiles for the neutral injection calculation described in Section 4. The solid curves 
plot the initial profiles, the dotted curves correspond to a time of 2.09 set, and the dashed curves 
show the profiles at 5.29 sec. As the density increases, few 120 keV neutrals penetrate to the plasma 
center. However, the resulting decrease in neutral heating at the center is offset by increased nuclear 
alpha heating, and the plasma ignites. 
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FIG. 6. Time evolution of ,!!T, the average electron density, the average temperature, and the 
total injection and nuclear alpha heating powers for the neutral injection calculation described 
in Section 4. In the final plot, the solid curve represents the injection heating, and the dotted curve 
represents the nuclear alpha heating. 

4.2. Compression in Mqjor and Minor Radius 

As a natural example, in order to obtain a plasma of small aspect ratio (A), we 
consider compression along the major and minor radii by prescribing the plasma 
boundary cross section as a function of time. During the compression we assume 
Fedge = constant. For compressions which are rapid compared to the resistive skin 
time, both toroidal and poloidal magnetic flux are well conserved; i.e., q(#) and 

* edge - $I,, are fixed. Assuming that Bm oc l/R [i.e., F(t,bedge) = constant], Furth and 
Yoshikawa [24] have shown that, for plasmas of fixed cross-sectional shape in the 
limit of large aspect ratios, toroidal magnetic flux conservation implies that the 
plasma minor radius must vary as 

a CC R1jz (18) 

during the compression. Using Eq. (18) and the above assumptions, they derive a 
set of compressional scaling laws for the parameters characterizing the plasma; e.g., 
the plasma current satisfies ZP oc l/R. 

As the plasma is compressed toward small aspect ratios, the assumption Eq. (18) 
and the resulting compressional scaling laws may require modification. In order to 
test this, we carried out compressional simulations in which 

a cc RF (19) 
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with several values of p to study the variation of (#edge - $J,,) with compression. We 
considered the compression of an elongated D-shaped plasma with a fixed elongation 
and triangularity. The initial values of the major and minor radii were taken to be 
R, = 240 cm and a = 80 cm, respectively. The final values were chosen to satisfy 
Eq. (19) and R - a = 20 cm (see Fig. 7). For the Furth-Yoshikawa scaling law 
(p = 0.5) the final values are R = 60 cm and a = 40 cm (i.e., A = 3 + A = 1.5). 
The compression in the major radius R was taken to be linear in time, and the duration 
of the compression was 7C = 0.2 set (the initial energy confinement time was 
TV = 0.3 set). A hydrogen plasma was assumed so that no nuclear heating would be 
present. In addition, the injection and particle fueling source terms were turned off. 
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FIG. 7. Flux surfaces (of constant I/J) for the initial and final states for the Q = 0.2 set, p = 0.57 
compressional calculation described in Section 4. The larger (outer) set of contours shows the low 
(-4 %) ,8 initial state, and the smaller (inner) set of contours shows the high (-19 %) /I compressed 
final state. 

Figure 8 shows the variation of ?/J&se - $,, with time, for fixed F(&dpe) and q(#), 
for cases having p = 0.5, 0.54, 0.57, and 0.6. It is seen that the power p required to 
maintain &dge - go constant changes with the aspect ratio of the plasma. Early 
in the compression, p = 0.54 best conserves $!+dge - I,&, and at the end of the 
compressionp = 0.6 conserves #edge - #,, , The initial and final values of #edge - c,,& 
are most nearly equal for p = 0.57. Note that if #edge - $, were fixed, either a or 
F(&dge) would then change in these calculations. 

Figure 9 shows the evolution with time of the plasma current profiles during the 
p = 0.57 compression. Note that the current profile becomes somewhat hollow as 
the plasma is compressed, although the q($) profile remains unchanged and monotonic 
between I .O and 3.0. The total plasma current is found to increase by a factor above 6, 
which differs significantly from the scaling of ZP CC l/R. Additional study, presently 
under way, is needed to understand in detail the effects of plasma boundary shape, 
small aspect ratios, and q(a,h) profiles on the compressional scaling laws. 
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FIG. 8. Time evolution of &se - I,/+, for several rC L 0.2 set compressional calculations as 
described in Section 4. The solid curve corresponds to the Furth-Yoshikawa scaling of p = 0.5 in 
Eq. (25). The dotted curve, the dashed curve, and the dot-dashed curve plot cases having p = 0.54, 
0.57, and 0.6, respectively. Note that the power law required to satisfy poloidal flux conservation 
('kcdgc - &, constant) varies as the aspect ratio decreases (time increases). 
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FIG. 9. Evolution of the toroidal current profile for the rC z 0.2 set, p = 0.57 compressional 
calculation described in Section 4. The solid, dotted, dashed, and dot-dashed curves correspond to 
times of 0, 0.1 I, 0.18, and 0.20 set and to fir of 4, 5, IO, and 19 %, respectively. 

5. SUMMARY 

The model and associated procedures discussed in this work provide a method for 
studying the time evolution of MHD equilibria subject to various particle and energy 
source terms. The numerical results obtained by these procedures satisfy satisfactory 
convergence criteria as well as consistency between the one-dimensional and two- 
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dimensional parts of the problem. Through the use of a fixed boundary equilibrium 
routine, it is possible to prescribe the evolution of the plasma boundary to permit us 
to treat cases in which the plasma cross section changes significantly and in which 
precise plasma positioning and shaping are required, without the necessity of using 
external fields and coils. The required external fields can then be calculated from the 
evolving MHD equilibrium data determined here [14]. This data can also be used as 
input in high-/3 MHD stability studies. 

Applications of the model presented here included the neutral beam heating of a 
prototypical reactor plasma to ignition and a compressional heating case designed to 
explore modifications to the Furth-Yoshikawa scaling law at small aspect ratio. 
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